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Abstract

One key question is whether people rely on frugal heuristics or full-information strategies

when making preference decisions. We propose a novel method, model-based active

learning, to answer whether people conform more to a rank-based heuristic

(Take-The-Best) or a weight-based full-information strategy (logistic regression). Our

method eclipses traditional model comparison techniques by using information theory to

characterize model predictions for how decision makers should actively sample information.

These analyses capture how sampling affects learning and how learning affects decisions on

subsequent trials. We develop and test model-based active learning algorithms for both

Take-The-Best and logistic regression. Our findings reveal that people largely follow a

weight-based learning strategy rather than a rank-based strategy, even in cases where their

preference decisions are better predicted by the Take-The-Best heuristic. This finding

suggests that people may have more refined knowledge than is revealed by their preference

decisions, but which can be revealed by their information sampling behavior. We argue

that model-based active learning is an effective and sensitive method for model selection

that expands the basis for model comparison.

Keywords: Heuristics; Model-Based Active Learning; Decision Making;

Take-The-Best; Learning
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Active learning reveals underlying decision strategies

Introduction

How do people decide between two alternatives? This question is as fundamental to

studies of judgment and decision making as its answer is controversial (Todd & Gigerenzer,

2000). Whereas some researchers propose people only require few pieces of information for

good decision making (Gigerenzer & Brighton, 2009; Marewski, Gaissmaier, & Gigerenzer,

2010; Şimşek, 2013), others have described them as integrating all available evidence

(Arkes, Dawes, & Christensen, 1986). One of the core questions in this debate concerns the

way in which people look up and integrate information (Bröder & Schiffer, 2003; Newell &

Shanks, 2003).

Imagine you have to decide between two restaurants. Both restaurants differ on

several binary features (for example, one is in walkable distance, the other is not). One

decision strategy you could apply is to weigh the features by their importance and add

them up; such as full-information strategies like regression or weighted additive models

would do (Payne, Bettman, & Johnson, 1993, WADD). For each restaurant, this strategy

would compute a weighted sum, and the restaurant with the larger sum is chosen.

Alternatively, you might use a simpler strategy and base your decision on a single feature

only. This is what the Take-The-Best heuristic (Gigerenzer & Goldstein, 1996, TTB) does:

it ranks features by their validity (Martignon & Hoffrage, 1999), and chooses the restaurant

that is preferred by the highest ranked feature. If that feature does not discriminate

between restaurants, then the second feature is considered, and so forth1. Weighing and

adding all features is a compensatory strategy, whereas TTB is a non-compensatory

strategy (Martignon & Hoffrage, 1999). Compensatory strategies have the property that

one feature’s implied decision can be compensated for by combinations of other features.

Linear or logistic regression are typical examples of such strategies. In contrast, once a

discriminating feature has been found, the non-compensatory TTB heuristic ignores all
1If none of the features discriminate between the two options, then TTB picks one of them at random.
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other features to make decisions. In this way, the most powerful discriminating feature Ck

outweighs any combination of the subsequent features Ck+1, · · · , Ck+n, for all k (Gigerenzer

& Goldstein, 1999). In fact, it is assumed that a decision maker utilizing the TTB heuristic

does not look up any features further down the rank order once a higher ranked feature

points towards favoring one option – a property which has earned TTB the label “fast and

frugal” (Gigerenzer, 2004). Hence, while a regression model would assume people are tuned

to the feature weights, the TTB heuristic assumes that they rely on feature rank orders.

What strategy do people use? Many of the empirically derived arguments in favor of

TTB are based on showing that TTB can outperform more complex, compensatory models

at out-of-sample predictions (Czerlinski, Gigerenzer, & Goldstein, 1999; Gigerenzer &

Brighton, 2009). Even though showing that heuristics can outperform more complex

strategies is a necessary precursor for establishing their ecological validity, it is

psychologically not the same as actually establishing that people apply these strategies.

Furthermore, although the initial studies leading to the discussion of TTB’s ecological

validity produced repeated evidence for “one good reason” decision strategies (Tversky,

1969), later studies have produced mixed results (Hilbig, 2010; Newell, Weston, & Shanks,

2003). The evidence for heuristic or full-information strategies is still inconclusive, and

derives from a homogeneous set of model testing methods. Furthermore, these methods

mostly rely on passive model testing, e.g., where stimuli are already pre-selected by the

experimenter, not necessarily reflecting how learning and decision making takes place in

the real world. We argue that novel model comparison approaches are needed – and that

active information sampling may be a sensitive method to add to our model comparison

toolkit. A related theoretical argument is that the common way of assessing people’s

cognitive strategies in over-simplified tests may not always reveal what knowledge they

have at their disposal.

We propose model-based active learning as a model discrimination method to assess

cognitive model classes (Cohn, Ghahramani, & Jordan, 1996). The central idea is that if a
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cognitive agent prefers one decision strategy over another, this should also be reflected in

the way she acquires information in a self-directed manner. If an agent has evolved to

prefer a certain class of models as her means to learn a cognitive representation in a

particular environment, then the way she sequentially selects information should (at least

partially) reflect this representation. For example, if an agent has come to apply TTB,

then —intuitively— she should try to gather information about feature rank orders. What

most previous decision making studies have in common is that they study people’s decision

making in static, passive and highly controlled experiments. Yet, in order to answer the

crucial question about what information people hold in memory and how they look up

knowledge when making decisions, we believe one has to also look at an earlier stage of the

process –at the stage of learning the relevant information (see also Coenen, Nelson, &

Gureckis, 2017). We argue that stronger evidence for people’s use of either TTB or a

full-information-like strategies comes from the way they actively acquire information.

Building on this intuition, we describe a general method to derive active learning versions

of traditional models of learning and decision making, by concentrating on one-step-ahead

uncertainty sampling (Cohn et al., 1996; Settles, 2010). Deriving active learning versions

for both Take-The-Best and logistic regression, we put these two models to a test in a

self-directed sampling task in which participants are able to select binary comparisons to

learn about the underlying structure in an “Alien Olympics” game. Thus, we are able to

observe both classic decision making behavior as well as active learning behavior. Our

results show that logistic regression does not only predict participants’ choices in a binary

prediction task better than TTB, but —more importantly— that self-directed learning

behavior is also better described by a model-based active learning version of logistic

regression than Take-The-Best. Participants seem to rather actively learn about the

underlying feature weights than about the feature rankings alone. Our results constrain the

types of decision strategies people might apply, although they do not limit them to just the

two edge cases of full information or heuristic strategies. Instead, a more subtle picture
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emerges, where even if participants’ choices corresponded to a TTB heuristic during

decision-making at test, their active learning behavior can still be governed by a

feature-based algorithm during self-directed learning.

In summary, the research presented here makes the following main contributions:

1. Our primary intend is a methodological proposal: We put forward model-based active

learning as a general-purpose model comparison technique for cognitive science, and

demonstrate its usefulness in a decision making example.

2. We derive model-based active learning versions for both Take-The-Best and logistic

regression and compare these in an active learning experiment, assessing whether

participants’ self-directed learning is more in line with an active version of TTB or

logistic regression.

3. Our experimental findings suggest that participants’ active learning behavior is

better described by a model-based version of logistic regression than TTB, which

suggests people focus more on learning feature weights rather than feature ranks.

Our findings also make a theoretical advance, demonstrating that people can

sometimes learn more complex representations than what is visible in more

traditional tests of overt behavior.

Traditional model tests of heuristics

While the fast-and-frugal heuristics approach gained popularity based on showing

statistical less-is-more effects when producing out-of-sample predictions for multiple real

world data sets (Brighton, 2006; Chater, Oaksford, Nakisa, & Redington, 2003; Czerlinski

et al., 1999), the empirical evidence for any specific use of heuristics is still controversial.

One of the core questions in this debate concerns the way in which people look up and

integrate information, and whether this behavior adheres to the search and stopping rules

imposed by heuristics or full-information strategies (Gigerenzer, Todd, ABC
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Research Group, et al., 1999; Newell & Shanks, 2003). The main assumption behind this

approach is that if people were using TTB, their information search of features should stop

in accordance with TTB’s stopping rule. In contrast, if they were using a full-information

strategy, information search should continue beyond that. Interestingly, a large body of

studies produced results contradicting TTB’s predictions - participants tend to look up

more information than what is needed when utilizing TTB (Bröder, 2000; Glöckner &

Betsch, 2008; Newell & Shanks, 2003; Newell et al., 2003). Other studies find that people’s

search behavior and response times conform to the TTB heuristic at least sometimes, and

in an adaptive manner (e.g. Bergert & Nosofsky, 2007; Bröder & Gaissmaier, 2007;

Dieckmann & Rieskamp, 2007; Rieskamp & Dieckmann, 2012).

However, using people’s additional feature integration as evidence for either cognitive

model has limited explanatory power. That is because presenting people with given

features at hand, e.g., on a screen in front of them, has been argued to elicit different

cognitive processes than the natural heuristic decision making process, which is assumed to

rely on learned feature knowledge from memory (sometimes called inference from memory

versus inference from givens, see Gigerenzer & Goldstein, 2011). Secondly, additional

feature search is only a limited approach to the problem at hand since it is only ever

possible to check for k + 1 feature look-ups given that k features have been presented so

far, and it has been argued that people might even look up additional information without

utilizing it later on (Marewski & Mehlhorn, 2011). Other studies tried to elicit people’s use

of the TTB heuristic by introducing additional information search cost to acquiring feature

information. Dieckmann and Rieskamp (2007) showed that stopping search in accordance

with TTB was more than twice as prevalent when the features’ look-up cost was increased,

where the prevalence rate also depended on the redundancy among features. Yet, how

much does this finding tell us about people’s actual use of TTB? Although the finding may

be partially explained by an adaptive use of TTB, it is also sensible to use less information

when features are costly, i.e., people did what a resource-rational account of decision
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making would also predict (cf Lieder, Krueger, & Griffiths, 2017). Much stronger evidence

for the use of frugal TTB strategies would come from people readily using TTB without

introducing additional search cost, i.e., a preference for heuristics even if information is free.

By far the most common method of pitting full-information models and heuristics

against each other have been statistical simulations. Heuristics have been shown to

outperform full-information models when making predictions within diverse data sets

(Czerlinski et al., 1999; Gigerenzer & Goldstein, 1996; Katsikopoulos, Schooler, & Hertwig,

2010). Other studies have shown that there is no strong reason to prefer TTB over other

cognitive models (Chater et al., 2003). However, just because one model class generates

better out-of-sample predictions, it does not follow that it is also a descriptive model of

human behavior. Beyond that, when one’s goal is to achieve high predictive accuracy at

capturing people’s decisions, there is no strong evidence for preferring frugal heuristics over

other strategies (Schulz, Speekenbrink, & Shanks, 2014). Indeed, actually learning a

non-compensatory strategy using only heuristic building blocks turns out to be a

non-trivial computational challenge (Schulz, Speekenbrink, & Meder, 2016). Nonetheless,

evidence from statistical less-is-more effects is frequently used as evidence for psychological

less-is-more effects, as evident in the literature: “More information or computation can

decrease accuracy; therefore, minds rely on simple heuristics in order to be more accurate

than strategies that use more information and time.” (Gigerenzer & Brighton, 2009, p.110).

In sum, existing model testing procedures are lacking in external validity,

psychological plausibility and discrimination accuracy. For example, binary forced choice

tasks are not good at discriminating how people arrive at their choice, i.e., by weighing and

adding features, or by relying on the feature rank orders and the highest ranked cue (also

in part because heuristics and regression models often make the same predictions). Instead,

we believe that psychological processing needs to be investigated in situ and with

appropriate methods that can elicit people’s representations concurrently.

We propose active information sampling as a sensitive method to assess which



HEURISTICS AND ACTIVE LEARNING 9

cognitive model people use. Our method is useful insofar as it focuses on how the

information is learned in the first place, and how it is subsequently used in decision

making. Using self-directed learning as a window onto the implementation of cognitive

strategies, it becomes possible to set up active learning algorithms for many models of

decision making, an approach we refer to as model-based active learning.

Model-based active learning

The main idea behind psychological theories of active learning is to describe a

learning agent as efficiently designing experiments (Chaloner & Larntz, 1989; Coenen,

Rehder, & Gureckis, 2015; Gureckis & Markant, 2012). This means that, given that she

wishes to find the true hypothesis out of many potential explanations as fast as possible, an

agent assigns prior probabilities to each hypothesis according to some objective criterion

such as available frequency data or according to the subjectively judged plausibility of each

hypothesis. Each possible outcome of each possible experiment can then be considered in a

“preposterior analysis” (Schlaifer & Raiffa, 1961), assessing the ways in which each possible

experimental outcome could modify beliefs about the hypotheses. Optimal experimental

design relies on maximizing an informational utility, which is typically a measure of how

much the beliefs about the hypotheses have changed and how much that change has

reduced uncertainty. A common measure of uncertainty reduction is the reduction of

entropy (Shannon, 1948). Entropy expresses the prior uncertainty about a hypothesis,

while the reduction in entropy refers to the reduction in uncertainty about the hypothesis

after seeing some evidence (Nelson, 2005).

There has been a great deal of interest in both normative and descriptive questions

surrounding human information acquisition (Nelson, McKenzie, Cottrell, & Sejnowski,

2010). In a probabilistic framework, active learning approaches have been used to model

human behavior on cognitive tasks such as feature learning (Griffiths & Austerweil, 2009),

reward-specific information search (Meder & Nelson, 2012), and to assess the trade-off
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between exploration and exploitation (Knox, Otto, Stone, & Love, 2011; Schulz,

Konstantinidis, & Speekenbrink, 2017). Oaksford and Chater (1994) were among the first

to define participants’ information selection behavior as active information acquisition. In

a series of experiments they showed that the way people select cards in the Wason card

selection task (see Wason, 1966) is in line with predictions derived form optimal

experimental design principles, thereby redefining what was previously thought of as

irrational behavior as a sensible strategy to test hypotheses. Markant and Gureckis (2014)

found that it is more efficient to select rather than to receive information when testing

hypotheses about categories and that participants tend to search in high information

regions along the category boundaries when actively selecting information. This in turn led

to faster learning and lower classification error (Markant & Gureckis, 2014). Lagnado and

Sloman (2004) found that participants learn about causal structure more easily if they are

allowed to perform timely interventions as compared to just passively observing the

system. This idea that was later expanded by Bramley, Lagnado, and Speekenbrink (2015)

and Coenen et al. (2015) to account for participants’ active causal learning behavior.

The goal of the current paper is to understand to what extent uncertainty-reducing

active learning implementations of classic decision strategies can describe participants’

active information search behavior, in order to distinguish among two prominent decision

making strategies, namely Take The Best and a weighted additive strategy (logistic

regression). In order to do so, we use the notion of efficient information gathering to assess

what people are trying to learn when performing self-directed sampling (as also suggested

by Bramley, Dayan, Griffiths, & Lagnado, 2017). As active learning counterparts to these

decision making strategies have not yet been proposed, we develop two learning algorithms

which aim to maximize information gain, one for a feature-ranking and one for a

feature-weighing strategy. While we focus on these two strategies to address whether

people learn to develop heuristics or full-information strategies, it is important to note that

our general model-based active learning framework can incorporate many other classes of
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psychological models.

Active learning algorithms

Both active learning algorithms essentially rely on a one-step ahead greedy approach

of minimizing, over all possible input queries, the expected posterior uncertainty about a

set of competing hypotheses. Input queries are all those test stimuli that an active agent

chooses from to learn about the underlying hypotheses, e.g., turning a card in the Wason

selection task, or asking a question about a category object such as a cat that resembles a

dog. In our experiment, a query refers to a binary comparison between two Alien species to

find out which one wins in a competition. Greedy algorithms always choose as the next

pair the query which promises to maximally reduce the uncertainty immediately following

feedback on the chosen input query (i.e., focusing only on the knowledge gained from a

competition between the chosen pair of aliens, but not on what could be learned thereafter).

Active Take-The-Best. The TTB heuristic assumes that people look up features

sequentially in the order of their validity, and stop this search as soon as a feature

discriminates (favors one option over the other). Therefore, the active TTB algorithm

learns with the goal of establishing the correct feature validity rank order, rather than the

precise validity weights. We implement a Bayesian version of TTB that estimates a

distribution over feature weights via Metropolis-Hastings sampling, thereby generating

multiple realizations of the TTB heuristic given its current posteriors’ feature rank orders.

In particular, using the data of pairwise Alien comparisons seen so far, this algorithms fits

a Bayesian linear regression where the comparison outcomes are regressed onto each feature

individually, assuming independent features as in heuristic feature validities (Martignon &

Hoffrage, 1999). Afterwards, we sample realizations from each of the distributions and

treat them as a proposed feature rank order for one proposed TTB model. This process is

repeated multiple times and we call the multiple realizations of TTB proposal TTBs. These

proposals can differ in their feature rank orders as they are based on Monte Carlo samples.
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The proposal TTBs are then used to create multiple realizations of model predictions over

the input queries (i.e., possible pairwise comparisons), and the predictive variances for

input queries can be assessed as the amount of disagreement over all proposal TTBs.

Higher disagreement means that the different proposal TTBs generated a higher predictive

variance for an input query. Queries with higher uncertainty lead to higher disagreement

and are therefore (in the long run) expected to reduce uncertainty more strongly. The

active TTB algorithm therefore chooses that query as its next observation where the

uncertainty is currently highest, as this is the query where uncertainty reduction is

expected to be large. Thus, the active TTB algorithm makes choices that are expected to

learn as much about the underlying feature rank orders as possible and therefore values

queries more whose rank-based results are currently uncertain.

Active logistic regression. Logistic regression is set up as the competing

full-information model. In contrast to the heuristic which relies on the feature rank order

and ignores the feature weights, logistic regression weighs each feature and integrates all of

them. The active logistic regression algorithm was set up to learn with the goal of

establishing the feature weight magnitudes. We implement a Bayesian version of logistic

regression based on a random walk Metropolis algorithm. We use Gibbs sampling to

generate posterior MCMC-samples over the regression weights. In particular, we perform

Bayesian logistic regression that takes all of the features as the independent variables and

the outcomes of the comparisons as the dependent variable. This leads to a posterior

distribution over different weights within the same regression model. Afterwards, we

sample realizations from the posterior distributions and treat them as the proposed weights

for one proposed logistic regression model. This process is repeated multiple times and we

will call the multiple realizations of logistic regression proposal logistic regression models.

The proposal logistic regression models can then be used to generate model

predictions over all input queries by sampling realizations for the weights. As in the active

TTB model, the predictive variance for each query can finally be approximated by the
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disagreement among proposal models. Thereby we build a logistic regression analogue to

the active TTB that is conceptually similar, i.e. it queries inputs whose output is currently

uncertain. The active logistic model hence chooses that input query next which has the

largest predictive variance and is expected to reduce uncertainty as much as possible.

Instead of trying to drive down the uncertainty with respect to feature rank orders, the

logistic algorithm tries to drive down uncertainty with respect to the regression weights.

Creating environments of different compensatoriness

We are interested in the performance of the two proposed active learning models in

environments with different “compensatoriness” (Martignon & Hoffrage, 1999). Decision

strategies are assumed to perform best in matching environments that have the same

properties, i.e., compensatory strategies performs best in a compensatory environment and

TTB in a non-compensatory environment (Martignon & Hoffrage, 1999). Note that a

non-compensatory environment can be defined as a logistic regression environment in

which the β weights are exponentially decreasing. In order to create different degrees of

“compensatoriness”, we make use of a mathematical trick that allows us to rely on a single

parameter to smoothly vary from compensatory to non-compensatory environments

through a “stick breaking process”.

If we have {β′k}4
k=1, then we can take

β′k ∼ Beta(1, θ) (1)

Define {β′k}4
k=1 as: (2)

βk = β′k

k−1∏
i=1

(1− β′i) (3)

to produce differently sized breaks from a stick of unit size. As the expectation of the

Beta-distribution is defined as θ
θ+β , we can infer that an environment where Take-The-Best

would thrive can be created by setting θ to 1 as this would lead to an expected stick break



HEURISTICS AND ACTIVE LEARNING 14

of half of the stick per break, i.e. very non-compensatory. As θ gets bigger, the result are

more and more uniformly distributed feature importances. The bound that separates

compensatory from non-compensatory strategies is θ = 1, and we use θ = [0, 0.5, 1, 2,∞]

for all the upcoming scenarios to cover a range of compensatory/non-compensatory

environments.

Figure 1 . Compensatoriness for five different levels of θ. The x-axis represents four
different features and the y-axis displays the feature weight magnitudes. These five levels
of compensatoriness were used as five conditions in the Experiment below.

The heuristic literature predicts people’s choice of decision model is adaptive to

compensatoriness and we sought to see whether this is also the case for active learning

models Martignon and Hoffrage (1999).

Experiment

We designed an experiment to find out whether people are more likely to follow a

rank-based or a weight-based active learning strategy. We hypothesized that the active
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learning model that best describes people’s information queries would also constitute their

most likely cognitive decision strategy. We also wanted to investigate whether people are

sensitive to the structure of the environment (the degree of compensatoriness) in their

active queries, such that in non-compensatory environments participants would be better

matched by active TTB, while in compensatory environments they would be better

matched by active logistic regression. Therefore, we assigned people randomly to one of the

five above-mentioned compensatoriness conditions.

Participants

Participants (N = 264, 137 females, average age M = 35.4) were recruited via

Amazon Mechanical Turk to take part in an “Alien Olympics” study. Participants were

paid $0.50 for participation plus an additional bonus between $0 and $0.50 depending on

their performance.

Procedure and stimuli

The experiment was divided into a learning and test phase. The learning phase

consisted of participants actively choosing Alien pairs to fight against each other, with as

binary outcome one of the aliens winning, and the other losing the match (i.e., a draw was

not possible).

Aliens varied on four different features (see Figure 2), resulting in a total of 16

possible Alien types in the Alien database for the entire experiment. Participants were told

that the presence of each feature was helpful in a fight, e.g., wings enabled an Alien to fly

which helps in attacking enemies, while camouflage is useful for hiding from enemies, and

antennae provide surrounding vision. The helpfulness of features was explained to

participants at the start of the experiment and they were also told that the different

features might not all be of equal importance for an Alien’s strength in a fight.

Learning Phase. On each learning trial, participants were presented with four

Aliens on the screen and had to choose which pair of Aliens would fight against each other
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Figure 2 . Aliens varied on 4 different features (A-D): Antennae, Wings, Diamonds, and
Camouflage. E: Alien without features, F: Alien with all features.

on that given trail.

We emphasized that participants should pick Aliens wisely by selecting informative

comparisons, as the goal was to learn how the different features influenced an Alien’s

chances to win. Participants were informed that they would need this feature knowledge

later on for the assessment task (the test phase). The presented four Aliens were randomly

sampled from the 16 Alien types without replacement. With four Aliens on any given

learning trial, there are six possible pairwise comparisons to choose from. After selecting a
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pair, participants received feedback about which Alien had won the competition. Reflecting

the probabilistic nature of the outcomes, participants were also told that, as in any sport,

sometimes a weaker Alien could win against a stronger competitor. The underlying feature

weights that determined the strength of the aliens depended on the compensatoriness

condition a participant was in (as shown in Fig. 1). The actual outcomes observed in

feedback were generated by using the weights (standardized to always add up to 10) and

applying logistic regression in order to determine the difference in strength between a pair

of Aliens (i.e., the likelihood of one winning against the other Alien). The learning phase

consisted of 30 trials.

Test Phase. The test phase was designed to assess what people had learned during

the learning phase and was structured as follows: On each test trial, participants were

presented with two different Aliens that were again randomly drawn from the Alien

database without replacement.

We told participants that these Aliens were the candidates for their “Olympic Team”,

and it was their task to always choose the Alien they considered to be stronger based on

what they had learned about the features in the learning phase. The test phase consisted

of 10 trials forcing participants to make binary choices. Participants were reminded that a

bonus payment would depend on their performance in this test phase. The bonus was

calculated based on the average probability of their chosen Aliens in the test set to win

against the other presented Alien. If p indicates that average probability over all test trials,

then participants’ overall reward was calculated as $0.5+p× 0.5.

Results

We present the results of the test phase first before moving onto the active learning

results. We will refer to the results from the test phase as “passive” model fits and to the

learning phase as “active” model comparison.

The average percentage of correct choices made was 74% with a range of [30%, 97%].
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percent of correct choices that participants made across the 10 test trials. Error bars
represent the standard error of the mean.

Participants’ performance at identifying the stronger Aliens during the test stage was

highly above chance, t(263) = 27.44, p < 0.001. Performance varied as a function of the

compensatoriness condition that participants were in. Figure 3 represents the average

performance score at test as a function of compensatoriness: As the environmental

structure becomes more non-compensatory (i.e., more weight on just a few features), the

average performance drops. This is intuitive as there is less information to be learned when

one feature dominates all others, a scenario which causes similar probabilities of wining

across Aliens and therefore makes informative comparisons less frequent. However, peak

performance was not observed for a fully compensatory environment, but rather for slightly

less compensatory situations (θ = 2).

Passive model comparison. Next, we compare the performance of both the TTB

heuristic and logistic regression at capturing participants’ behavior at test. The models

used here to predict test choices represent the standard TTB heuristic and logistic
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regression model as found in the psychological literature (e.g., Czerlinski et al., 1999;

Gigerenzer & Brighton, 2009), and are not to be confused with the active learning versions

specified above.

We use a cross-validation procedure in which both algorithms learn weights from the

Alien pairs in the learning phase (training sample) and make binary predictions for the

Alien pairs in the test phase (test sample). A training sample consists of the set of pairwise

alien comparisons a participant chose during learning and its respective feedback, while the

test sample consists of the test trials the participant saw. Consequently, each participant

has a different training experience depending on what queries they selected during the

learning trials (and the attached feedback these selections produced). Both the TTB and

logistic regression model are fit to each participant’s training sample, and the fitted weights

are used to make predictions for participants’ test samples.
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Figure 4 . Predictive accuracy of the TTB heuristic, logistic regression, and a random
model at test. Y-axis represents the percent of correct predictions with respect to peoples’
choices across the 10 test trials. Results are averaged across compensatoriness conditions.
Error bars represent ± SEM.
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Figure 4 presents the predictive accuracy of the TTB and logistic regression model in

comparison with a model that predicts at random. It can be seen that both logistic

regression (t(243) = 51.43, p < 0.001, d = 3.17) and TTB (t(243) = 9.34, p < 0.001,

d = 0.57) were better than the random model at predicting people’s behavior at test.

However, logistic regression performs better than the TTB heuristic at capturing

participants’ choices (t(243) = 15.83, p < 0.001, d = 0.97). These results suggest that

participants’ decisions at test were more in line with a logistic regression strategy. If we

were to stop here, the conclusion would be that the full-information model is

psychologically more plausible than the heuristic. In the literature, most studies do not go

beyond this point and rely on behavioral model fits assessed in the test phase (i.e., as

indicated by percentage correct, R-squared, AIC, and so forth) to draw conclusions about

people’s decision making processes. However, we argue that this approach represents a

somewhat impoverished view on people’s inference processes. This common method to

perform model comparisons predicts participants’ choices in a highly controlled and passive

environment, where stimuli have been pre-selected by the experimenter and people do not

get any freedom in choosing the stimuli that make up the binary choices.

Active learning queries. We focus on people’s active learning queries; we

categorized all possible queries into the 8 subtypes that can be seen on the x-axis of

Figure 5. For example, +000 signifies a comparison of two Aliens with three equal features

(0 for draw), where one Alien had one more feature than the other Alien (+ for advantage).

A +− 00 query compares two Aliens that are matched on two features but differ on two

other features (+ for advantage, − for disadvantage). An example of +− 00 may be where

one of the Aliens features “Wings” while the comparison Alien features “Camouflage”, but

both possess “Diamonds” and “Antennae”. This query therefore indicates an assessment of

whether “Wings” or “Camouflage” were more important for the outcome in an Alien fight.

In general, it can be said that all queries, i.e., even queries such as + + +0, exhibit some

information about feature weights, while for a rank based strategy (TTB) the best queries
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to learn about feature order are primarily the queries +− 00, + +−0, and + + +−.

It can be seen in Figure 5 that people rarely chose comparisons where it is unclear

what feature was responsible for an outcome, e.g., a comparison of an Alien with 3 or 4

more features than its competitor (i.e., + + +0 or + + ++). Instead, the most common

comparisons was a more controlled comparison, such as the +− 00. Crucially, to interpret

people’s queries in a meaningful way, one needs to look at how people’s queries differ from

what would be expected if they chose the pairs randomly, i.e., under the experiments’ base

rate. Every query has a different base rate probability of occurring on any given learning

trial, i.e., some Alien comparisons are more likely than others due to the nature of how the

16 different Alien types were generated. Thus, we compared the absolute frequencies with

which participants chose each query across the learning phase (“Observed” in Figure 5)

with the probabilities of each query occurring at any trial for any participant. The base

rate probabilities were measured as the relative frequency of query occurrence across the

full experiment. A Chi-square test of goodness of fit reveals that the observed distribution

of frequencies was significantly different from the expected frequency distribution under the

base rate probabilities, χ2(2) = 460.23, p < 2.2× 10−16, φ = 0.23. Hence, it can be

concluded that people’s behavior in the learning task was non-random.

Comparing the observed frequency counts against the expected frequency counts

under the null hypothesis of random choice (Figure 5) reveals that the biggest difference

was that participants queried the +000 and the +− 00 comparisons a lot more, while the

+ + 00 and the + + +0 a lot less, then expected under random choice. This suggests that

participants were choosing more informative comparisons than expected, where the source

of an Alien’s strength can be clearly attributed to a feature. Although participants were

told in the instructions that all features are helpful in fights, the +000 query was still a

relatively popular query, which essentially tests whether a feature has a positive or negative

effect on an Alien’s strength –a sensible query if the features valences were assumed to be

unknown. Moreover, repeating this query multiple times leads to an increased knowledge
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Figure 5 . The 8 subtypes of active learning queries that participants could make. The
y-axis represents the frequency of choosing the query across the 30 learning trials across
264 participants. Coding is as follows: ‘+’ = Alien has a feature that the other alien does
not have (advantage); ‘-’ = Alien lacks a feature that the other alien has (disadvantage); ‘0’
= Both aliens have the feature, or both aliens do not have the feature (draw). The figure
plots the observed frequency of choosing a particular query against the expected frequency
of choosing a particular query under the base rate (probability of occurring naturally) in
the experiment.

about the magnitude of a feature’s overall weight (i.e., its validity).

The query that shows the largest difference from the base rate is the +− 00 query.

This test involves comparing two Aliens which differ on 2 features, for example “Wings”

and “Camouflage”, and assessing the relative importance of Wings in comparison to

Camouflage for the outcome directly. As mentioned above, this query can be seen as a test

for establishing feature order, but performing this query multiple times can also assist in

learning differential weights.

Finally, we assessed changes in query over time, to see if people may apply different

strategies at different stages in the learning phase. Figure 6 plots query frequencies as a

function of learning trial. What is apparent from this Figure is the general increase in in

the +000 query, and a relative decrease in the other queries, including the +− 00 queries.

At the final trial, the +000 query is the most common one, which goes against the base rate

which would predict the +− 00 query to be less frequent than the +000 query (Figure 5).
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Figure 6 . The 8 subtypes of active learning queries that participants made as a function of
time, i.e., learning trials progressing from 1 to 30 (x-axis). The y-axis represents the
number of participants out of 264 participants in total that chose the query at each trial.
The data points for each graph were smoothed to a line graph with a generalized additive
model as the smoothing function, where the boundaries represent the 95% confidence band.

It appears that people are systematically choosing +− 00 more often up to a point,

while later in the experiment, e.g., approximately from trial 21 onwards, the simpler +000

query starts to dominate (the slope for the +000 query is significant with β = 0.53± 0.16,

p < .01). Elaborating on the meaning of the +000 query, it seems to be a relatively

uninformative query at first sight, especially once the features’ valences are established by

the learner. However, repeating this query multiple times will reveal a feature’s overall

relative importance and therefore can indicate a further focus on learning the weight of this

feature. Therefore, the increase in the +000 query in later trials may reflect a preference to

perform more focused tests towards the end. This is in line with recent research indicating

people have a tendency to to build up models gradually over trials, with more fine-grained

testing towards later learning trials (Bramley et al., 2017). Other research also suggests
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people’s active learning strategies may often use a combination of discriminatory and

confirmatory testing, e.g., in causal intervention studies (Coenen et al., 2015). Lastly, it

can be said about Figure 6 that participants overall preferred the more complex + +−0

query to the + + 00 query (middle green lines), despite equal base rates. The + +−0 query

can be seen as a more complex test, comparing an Alien with two features to an Alien with

one other feature, e.g., assessing how much better or worse “Antenna” is compared to

“Wings” and “Diamonds” combined.

Model-based active learning comparison. Finally, we look at the

correspondence between the active learning algorithms and people’s queries. We let both

the TTB and logistic regression algorithms learn in the same compensatory and

non-compensatory environment as the participants, by creating as many simulated

participant profiles as there were participants in each compensatoriness condition. Then,

we let the models learn over time. In particular, the models are fed participants’ data at

time point t and generate one-step ahead predictions for trial t+ 1. Both active algorithms

are driven by uncertainty sampling, which means they are predicted to choose that Alien

comparison next which maximally reduces uncertainty. If, for example, there are six

possible Alien comparisons to choose from at a given learning trial t+ 1, the algorithms

produce a vector of uncertainties for all possible queries at time t+ 1, and the query

producing the greatest uncertainty would be chosen. To assess correspondence between

participants’ choices and the algorithms, participants’ actual choices across all learning

trails were regressed onto the predicted model-based uncertainties — normalized per trial

— in a logistic regression for each participant individually.

Figure 7 shows the match between the active algorithms and participants’ queries, as

measured by the resulting averaged McFadden’s pseudo R-squared (McFadden et al.,

1973), as a function of compensatoriness conditions. Results demonstrate that the active

logistic algorithm captured people’s queries better than the TTB algorithm across all

environments. This was true regardless of the compensatoriness condition. These findings
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Figure 7 . Correspondence between the active learning algorithms and participants’ active
queries, as a function of the compensatoriness condition. Results are established from
simulating active participants with both active learning models in a step-by-step fashion
predicting participants’ next queries. The active logistic algorithm was better at capturing
people’s active queries than the TTB algorithm, regardless of compensatoriness condition.
Error bars represent ± SEM.

are in line with our predictions and the results from test phase in Figure 4. We ruled out

that people applied a confirmatory sampling strategy by explicitly testing an active

learning model that chooses queries which minimize uncertainty reduction, which does no

apply here as can be seen from the non-negative correlations in Figure 7.

While the pseudo R-Squared values may appear to be low relative to traditional

passive model fits, two things need to be noted. Non-active behavioral model fits typically

predict one out of two objects to choose from (e.g., one of two Aliens in a test pair), while

there are typically many active queries to choose from (e.g., six possible queries on each

trial in our experiment), and these can be of roughly equal informativeness (uncertainty) to

an ideal learner, meaning they could be tested in any order. Hence this automatically
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reduces predictability of active queries compared to standard decision making tasks and

has been reported in other studies (e.g., see Bramley et al. (2017) for further discussion).

Secondly, we did not optimize hyper-parameters to enforce a greater model fit of the

model-based active learning algorithms as is frequently done in other active learning

studies. Instead, all predictions were purely derived from what a (close to) rational active

learner would value on every trial, had she learned with one particular decision strategy in

mind and seen a participant’s queries up to that trial. Thus, although these measures are

small, our results nonetheless indicate that participants took the uncertainty of the

different queries into account, thereby significantly valuing uncertainty reduction over

confirmatory hypothesis testing.

Interestingly, no clear relationship between the compensatoriness among features and

the best fit active models can be seen, e.g., it was not the case that the active TTB model

better predicted people’s queries in non-compensatory conditions and the active logistic

model better fit in compensatory conditions. Instead, people seem to be learning the

weights regardless of compensatoriness. These results go against parts of the heuristic

literature claiming people are not able to learn weights due to capacity limitations and

instead rely on heuristics which are less computational demanding (Gigerenzer et al.,

1999). Particularly, in the highly non-compensatory environments which are ideal for the

TTB heuristic (Martignon & Hoffrage, 1999; Rieskamp & Dieckmann, 2012), it may be

surprising that people still behaved more in line with an active logistic regression strategy.

The aforementioned results are also confirmed by assessing the aggregated active

model comparison results. In the active condition, the mean performance for both the

logistic regression (AIC = 160.5, t(263) = 8.49, p < 0.001, d = 0.52) and the Take-The-Best

model (AIC = 164.4, t(263) = 4.63, p < 0.001, d = 0.28) was better than a random model.

However, the active logistic regression model described participants’ behavior better than

the active Take-The-Best model (t(263) = 7.88, p < 0.001, d = 0.49). This suggests that

participants were actively querying in a manner more consistent with a feature-weight
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Table 1
Number of participants best classified by an active TTB model versus active logistic model
during the learning phase (columns), in relation to those best fit by a TTB model and a
logistic regression model at test (rows). The classification is performed based on the lower
AIC.

TTB active LOG active ∑passive
TTB passive 47 67 114
LOG passive 43 107 150∑active 90 174 264

based model.

Dissociation between active and passive learning

Table 1 shows a 2-by-2 frequency table displaying the number of participants best fit

by either model (as indicated by lower AIC) for both the learning and test phase. The

columns labeled “active” refer to the active learning algorithm applied to the learning

phase, while the rows labeled “passive” refer to both the passive TTB and LOG model

applied to the test phase, respectively. To the extent that there should be internal

consistency between the learning and test phase, one would expect that the diagonal

entries of this 2-by-2 matrix should be a lot higher than the off-diagonal entries. For

example, a learner who is best described as a TTB user during decision-making at test

would also be expected to be best described as a TTB learner during learning. Indeed,

results show that the majority of people that were best fit by an active logistic model

(LOG active), were also best fit by a passive logistic model (LOG passive) at test, i.e., 107

participants in the bottom right cell. This is good evidence for the internal consistency of

an individual’s use of strategies in our experiment. However, while there was a clear

majority of people better fit by an active logistic model compared to the active TTB model

in the learning phase (∑active: 174 vs. 90), the total number best fit by TTB passive and

LOG passive at test was much more balanced (∑passive: 114 vs. 150).

Most strikingly, some people that were best described by the LOG active algorithm

during learning, appear to be best predicted by TTB passive at test, i.e., the 67
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participants in the top right cell. This suggests that there were people that looked like they

applied TTB at test, but when studying the active learning algorithms it becomes apparent

that they were in fact also trying to actively learn the feature weights. This finding is

particularly interesting as it may indicate that these participants empirically matched the

TTB decision rule in making binary choices, but might have had the feature weights at

their disposal. This result adds evidence to the fact that passive model comparisons are

often not sufficient as a model discrimination technique and may even obscure

psychological processing that could be uncovered with model-based active learning studies.

General Discussion

Deciding between different options is common activity in our daily lives. Yet, definite

answers to the question of whether people do so by following simple heuristics or

differentially weighing and integrating the available information remain elusive. To

overcome the existing conundrum of decision making strategies, we proposed to enrich the

available repertoire of model comparison techniques by adding model-based active learning.

Model-based active learning is built on the assumption that cognitive agents actively query

information in the environment in order to minimize uncertainty about the cognitive model

they utilize in that particular environment. This proposal is built on a rich canon of past

research on human active learning (Bramley et al., 2015; Coenen et al., 2017; Markant &

Gureckis, 2014; Nelson, 2005). Our work contributes to this growing literature in active

learning by incorporating uncertainty sampling to determine which cognitive model best

characterizes human decision making.

Using this approach, we built active learning versions of both the Take-The-Best

heuristic as well as a logistic regression decision strategy. Whereas the former only aims to

reduce uncertainty about feature rank orders, the latter tries to minimize uncertainty about

weights. This critical difference allows model predictions to be disentangled in regards to

information sampling. In our experiment, human participants selected comparisons to learn



HEURISTICS AND ACTIVE LEARNING 29

about the underlying task structure. Our results showed that for both active learning as

well as the predictions at test, a logistic regression strategy described participants’ behavior

better than the Take-The-Best heuristic. Thus, our newly-introduced method enabled us to

find evidence for a preference of weight-based over rank-based decision strategies. These

analyses expand the scope of model evaluation for theories of decision making.

The dissociation between people’s active learning strategies and their choice

strategies at test (Table 1) suggests that people may be more sensitive to differential

weighting of information than is evident from the more common procedure of passive

model fitting to participants’ binary choices. This finding is in line with the possibility that

heuristics may provide a good general characterization of data but that other accounts that

are sensitive to additional information sources may perform even better (Parpart, Jones, &

Love, 2017). Here, active learning provided a novel means to reveal the nuances of how

people make decisions.

The current work is a first step towards a fully-fledged theory of model-based active

learning. We hope that future research expands and improves upon our results. First, the

produced pseudo R-squared values within our model comparison are relatively low, which

we believe is due to not optimizing the hyper-parameters but solely relying on a model’s

uncertainty to generate predictions. Whilst we chose to restrict the free parameters for

simplicity, there is room for improvement and alternative models in future work. The

present work demonstrates how learning models in which uncertainty is quantified can be

evaluated in an active learning paradigm. Therefore, we welcome other researchers to

evaluate other candidate models using the active learning blueprint we provide.

Secondly, the correspondence between the models used for active learning and the

models used for the decision at test needs to be assessed further. Whereas our experiment

has shown a relatively high consistency between the best active learning model and best

model at test for each participant, there were also cases where this was not the case. This

could either be the result of noise within the model comparison procedure or indicate that
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these participants might have used a different strategy for self-directed sampling than for

decisions at test. For example, it is conceivable that participants start out learning about

all the weights and —as soon as they learn that there is a non-compensatory structure—

decide to ignore the weights and just base their decisions on more simplistic strategies (Niv

et al., 2015). Further charting the landscape of correspondence between active and passive

learning models will be another important step.

Our model-based active learning approach may also have interesting implications for

the strategic sampling literature (Wilson, Geana, White, Ludvig, & Cohen, 2014). It is very

difficult to assess whether an agent is an optimal sampler or not unless the analysis is done

with respect to what model the learner is using. In line with this, our model-based learning

approach puts particular emphasis on the model allowing for an optimal learner to actively

learn in the first place, which a model-free uncertainty reduction approach cannot capture.

We believe that re-conceptualizing psychological models as active learning strategies

will continue to provide insights to fundamental principles of learning and decision making,

that would not be possible otherwise. We think this will apply to both the debate around

heuristics, and hopefully other big debates in psychology. This, however, will require

further replication and modifications of our current approach. Sometimes one should not

make a decision after only one cue discriminates between two options.
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